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Abstract.

Several practical instances of network design problems often require the network
to satisfy multiple constraints. In this paper, we focus on the following problem
(and its variants): �nd a low-cost network, under one cost function, that services
every node in the graph, under another cost function, (i.e., every node of the graph
is within a prespeci�ed distance from the network). Such problems �nd applications
in optical network design and the e�cient maintenance of distributed databases.
We utilize the framework developed in Marathe et al. [1995] to formulate these

problems as bicriteria network design problems, and present approximation algo-
rithms for a class of service-constrained network design problems. We also present
lower bounds on the approximability of these problems that demonstrate that our
performance ratios are close to best possible.

Key words: Approximation algorithms, Bicriteria problems, Spanning trees, Net-
work design, Combinatorial algorithms.
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1. Introduction and Motivation

The problem of managing replicated copies of a data in a distributed
database is an important and extensively studied problem in computer sci-
ence. (See Awerbuch et al. [1992], Awerbuch et al. [1993], Lund et al. [1994],
Dowdy and Foster [1982], Milo and Wolfson [1988], Kumar and Segev [1993]
and the references therein.) As an example, consider the problem posed in
Wolfson and Milo [1991] on the design of distributed databases: given a set
of sites in a network we wish to select a subset of the sites at which to place
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copies of the database. The major requirement is that each site should be
able to access a copy of the database within a prespeci�ed service time, and
the chosen sites should be connected together as a minimum cost tree so
that updates to one of the copies can be propagated to the other copies in
a cost e�ective manner (See Fig. 1.1).

A problem of a similar nature comes up in the area of optical network de-
sign. Developments in �ber-optic networking technology have �nally reached
the point where it is being considered as the most promising candidate for
the next generation of wide-area backbone networks (Green [1992]). The
optical network is a pure data transmission medium. All the computing and
processing continues to be done in the electronic world. An important issue
in interfacing these two worlds { the electronic and the optic { is that of de-
signing the optical network subject to location-theoretic constraints imposed
by the electronic world. Given a set of sites in a network we wish to select a
subset of the sites at which to place optoelectronic switches and routers. As
before, the major requirement is that every site should be within a prespec-
i�ed distance or delay from an optoelectronic access node and the chosen
sites should be connected together using �ber-optic links in a minimum cost
tree (See Fig. 1.2).

As a �nal application consider the Traveling Cameraman Problem that
arises in automatic optical inspection of printed circuit boards (see Iwano
et al. [1994], Hernandes et al. [1993] and the references therein) . In this
problem, a camera is positioned over the board and can be freely moved in
a plane parallel to the board. The camera is moved over the board so as
to photograph parts of the board at various positions. These photographs
are compared to the \master photograph" for detecting possible defects
such as violation of design rules, mounting and soldering condition of the
components on the board, etc. An important consideration is the time
taken to perform the entire inspection sequence; which is proportional to
the distance traversed by the camera as well as the number of photographs
taken. Thus the goal of the problem is to design a strategy for moving the
camera to cover a minimum distance with the constraint that the entire
board is photographed.

All of the above stated problems can be thought of as instances of \service-
constrained network design problems." Informally, service-constrained net-
work design problems involve both a location-theoretic objective and a cost-
minimization objective subject to connectivity constraints. The location-
theoretic objective requires that we choose a subset of nodes at which to
\locate" services such that each node is within a bounded distance from at
least one chosen location. The cost-minimization objective requires that the
chosen locations be connected by a network minimizing parameters such as
total cost, diameter or maximum edge cost. The two objectives are measured
under two (possibly) di�erent cost functions.
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Fig. 1.1: The database copies are shown linked by a network. The circles represent the
prespeci�ed service times.

2. Problem Statement

The prototypical problem we consider in this paper is the following: We are
given an undirected graph G = (V;E) with two di�erent cost functions c
(modeling the service cost) and d (modeling the construction or communi-
cation cost) for each edge e 2 E, and a bound Sv (on the service distance for
each vertex v). The goal is to �nd a minimum d-cost tree such that every
node v in the graph is serviced by some node in the tree, i.e. every node v

OPTICAL MEDIUM

ELECTRONIC MEDIUM

Fig. 1.2: The optoelectronic switches are shown linked by a network. The circles represent
the prespeci�ed distances.
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is within distance Sv (under the c-costs) of some node in the tree.

We use the bicriteria framework developed in Marathe et al. [1995]. A
generic bicriteria network design problem, (A, B, S), is de�ned by identify-
ing two minimization objectives, { A and B, { from a set of possible objec-
tives, and specifying a membership requirement in a class of subgraphs, {
S. The problem speci�es a budget value on the �rst objective, A, under one
cost function, and seeks to �nd a network having minimum possible value
for the second objective, B, under another cost function, such that this net-
work is within the budget on the �rst objective A. The solution network
must belong to the subgraph-class S.

The two versions of the location-theoretic or service cost objective that
we consider are: (i) Non-uniform maximum service cost (denoted by Non-
uniform service cost) and (ii) Uniform service cost (denoted by Uniform
service cost). In the Non-uniform service cost version a service constraint
Svk is speci�ed for each vertex. The Uniform service cost version is a special
case where 8vk; Svk = S, i.e., all vertices have the same service constraint.
Thus for the problems considered in this paper A 2 f Non-uniform service
cost, Uniform service cost g. For the cost-minimization objective we focus
our attention on the total cost of the network. The Total cost objective is
the sum of the costs of all the edges in the network. We also consider the
Diameter objective { the maximum distance between any pair of nodes in
the network { and the Bottleneck objective { the maximum value of any edge
in the network. Thus B 2 f total cost, diameter, bottleneck cost g
Finally, for the problems considered here S 2 f (Spanning) tree, Steiner
tree, generalized Steiner tree g. For example, the problem of �nding a
low-cost service constrained network introduced in Figure 1.1 is the (Non-
uniform service cost, Total cost, Tree) problem.

The organization of the rest of the paper is as follows: In Section 3, we sur-
vey related results. Section 4 provides an overview of the results in this pa-
per. Section 5 discusses the robustness and the generality of our formulations
and results. Section 6 contains the results on hardness of approximations for
both the di�erent and identical cost cases. Section 7 contains the approxima-
tion algorithms for spanning trees under di�erent cost functions. Section 8
contains the algorithms for spanning trees generalized Steiner forests, when
the cost functions are identical; Section 9 investigates the diameter and bot-
tleneck cost objectives; Section 10 contains some concluding remarks and
open problems.

3. Previous Work

Variants of the service-constrained tour problem have been considered by
Arkin et al. [1994], Arkin and Hassin [1994], Current and Schilling [1989].
Current and Schilling [1989] consider the covering salesperson problem and
present a heuristic for it without providing any performance guarantees. In
this problem, nodes represent customers and the service radius represents
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the distance a customer is willing to travel to meet the salesperson. The goal
is to �nd a minimum length salesperson tour so that all the (customer) nodes
are strictly serviced. Arkin and Hassin [1994] considered geometric versions
of the problem, where the service neighborhood (i.e., the neighborhood the
customer is willing to travel) is modeled as a region in the plane. For convex
neighborhoods, they present heuristics that provide constant performance
guarantees. They also show how their heuristics can be extended to noncon-
vex regions. Arkin et al. [1994] considered additional geometric variations
of the covering tour problem including the lawn mower problem, where the
goal is to �nd a tour such that each given point within some boundary (the
lawn) is within a circle of unit radius from at least one point on the tour.
They provide an approximation algorithm for this problem with a constant
performance guarantee. Recently Mata and Mitchell [1995] generalized and
improved the results of Arkin et al. [1994] on geometric covering problems.
Iwano et al. [1994] considered a geometric version of the problem motivated
by applications in automatic optical inspection of printed circuit boards.

Awerbuch et al. [1992], Awerbuch et al. [1993] and Lund et al. [1994]
consider an on-line variant of the distributed data management problem.
In their model, read or write requests from various processing units arrive
in an on-line fashion and an on-line algorithm needs to decide whether to
replicate, move or discard copies of the database after serving each request.
The goal of the on-line algorithm is to minimize the total cost of processing
these requests. Due to the di�erences in the model considered, their results
do not apply to the problems considered here.

We refer the reader to the work in Marathe et al. [1995] for other references
on approximation algorithms for multicriteria network design.

4. Overview of Results

In this paper, we study the complexity and approximability of a number of
service-constrained network design problems discussed in Section 2. Many
of the problems considered in this paper, are NP-hard (Garey and Johnson
[1979]). Given the hardness of �nding optimal solutions, we concentrate on
devising approximation algorithms with worst case performance guarantees.
Recall that an approximation algorithm for an optimization problem � pro-
vides a performance guarantee of � if for every instance I of �, the solution
value returned by the approximation algorithm is within a factor � of the
optimal value for I. De�ne an (�; �)-approximation algorithm for an (A, B,
S)-bicriteria problem as a polynomial-time algorithm that produces a solu-
tion in which the �rst objective (A) value, is at most � times the budget,
and the second objective (B) value, is at most � times the minimum for any
solution that is within the budget on A. The solution produced must belong
to the subgraph-class S.

As mentioned before, the two objectives are measured with respect to dif-
ferent edge-cost functions. The (budgeted) service cost objective is measured



6 MARATHE, RAVI AND SUNDARAM

using the c-cost function while the cost-minimization objective is measured
using the d-cost function. As stated before, a node u is said to service node
v if u is within distance Sv of v, under the c-cost. The service-degree of a
node is de�ned to be the number of nodes it services. All our results come
in two avors: (i) Di�erent cost functions and (ii) Identical cost functions.
The Identical cost functions version is a special case of the Di�erent cost
functions case where the two cost functions are the same, i.e. ce = de;8e.
We give a (1; O( ~� lnn))-approximation algorithm for the (Non-uniform

service cost, Total edge cost, Spanning Tree) problem (where ~� is
the maximum service-degree of any node in the graph). We counterbalance
this by showing that even the uniform service cost version of the problem
does not have an (�; �)-approximation algorithm for any � � 1 and � < lnn
unless NP � DTIME(nlog log n). When both the objectives are evaluated
under the same cost function we provide a (2(1+�); 2(1+ 1

�
))-approximation

algorithm, for any � > 0. In the opposite direction we provide a hardness
result showing that even in the restricted case where the two cost functions
are the same the problem does not have an (�; �)-approximation algorithm
for � < 2 and � < lnn unless NP � DTIME(nlog log n). For the iden-
tical cost functions case, our method extends to generalized Steiner forest
version of the problem with weaker guarantees. Finally, we show that the
problems (Non-uniform service cost, Diameter, Spanning Tree) and
(Non-uniform service cost, Bottleneck, Spanning Tree) are solvable
in polynomial time. Again, our results extend to the Steiner tree variants
of the problems.

5. Bicriteria Formulations: Properties

We briey discuss the generality and the robustness of our bicriteria formu-
lations. The discussion is based on the results in Marathe et al. [1995] and
hence we keep the discussion brief.

We say that our formulation is robust since the quality of approximation
is independent of which of the two criteria we impose the budget on. Specif-
ically, the problem of �nding a spanning tree that service all the nodes in a
graph can be formulated in two natural ways : (i)(Uniform service cost,
Total cost, Spanning Tree)-problem, and (ii)(Total cost, Uniform ser-
vice cost, Tree)-problem. Problem (i) has already been discussed. In
problem (ii), given a bound B on the cost of a spanning tree, we wish to
�nd a spanning tree of cost no more than B such that the maximum service
distance for any node not in the tree is minimized.

Note that these problems are meaningful only when the two criteria are
hostile with respect to each other - the minimization of one criterion conicts
with the minimization of the other. A good example of hostile objectives
are the degree and the total edge cost of a spanning tree in an unweighted
graph. An example of a pair of objectives that are not hostile are the bottle-
neck cost (maximum cost of any edge) and the total edge cost of a spanning
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tree, since minimizing the latter automatically minimizes the former. Two
minimization criteria are formally de�ned to be hostile whenever the mini-
mum value of one objective is monotonically non-decreasing as the budget
(bound) on the value of the other objective is decreased. It is easy to see
that service cost and the total cost of the tree are hostile functions. Thus
using the ideas in Marathe et al. [1995] we have the following result.

Theorem 1. Any (�; �)-approximation algorithm for (Uniform service
cost, Total cost, Spanning Tree) can be transformed in polynomial time
into a (�; �)-approximation algorithm for (Total cost, Uniform service
cost, Spanning Tree).

Theorem 1 directly extends to other variants of the problem such as the
problems (Uniform service cost, Diameter, Spanning Tree), (Uni-
form service cost, Total Cost, Steiner Tree), etc. The extensions are
immediate and thus we omit their proofs.
Next, we discuss the generality of our results. We claim that our results

are more general because they subsume the case where one wishes to min-
imize some functional combination of the two criteria. For the purposes of
illustration let A and B be two objective functions and let us say that we
wish to minimize the sum of the two objectives A and B. Call this an (A
+ B, S) problem. The following theorem follows by arguments similar to
those given in Marathe et al. [1995].

Theorem 2. Let ALG be any (�; �)-approximation algorithm for (A, B,
S) on graph G. Then there is a polynomial time approximation algorithm
ONE-ALG for the (A + B, S) problem with performance guarantee (1 +
�) maxf�; �g.

Similar results hold for the (AB, S) problem. In contrast, it is not clear
how to extend an algorithm for the (AB, S) or the (A +B, S) problem to an
(approximation) algorithm for the (A, B, S) problem. It is in this sense that
we claim the generality of our results. Note that in some cases algorithms
with better performance than ONE-ALG can be obtained directly for the
unicriteria version of the problems (see Marathe et al. [1995]).

6. Hardness results

6.1 Di�erent Costs

First we show the following hardness result for spanning trees under di�erent
cost functions, in the uniform service distance case, when all the service
distances are the same. We use the recent results on the non-approximability
of MIN SET COVER problem.
As an instance of the MIN SET COVER problem we are given a uni-

verse Q = fq1; q2; : : : ; qng and a collection Q1; Q2; : : : ; Qm of subsets of Q.
The problem is to �nd a minimum size collection of the subsets whose union
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is Q. Recently Feige [1996] has shown the following non-approximability
result:

Theorem 3. Unless NP � DTIME(nlog log n), the MIN SET COVER
problem, with a universe of size k, cannot be approximated to better than a
lnk factor.

Theorem 4. Unless NP � DTIME(nlog log n), the (Uniform service
cost, Total cost, Spanning Tree) problem, with di�erent cost functions,
cannot be approximated to within (�; �), for any � � 1 and any � < lnn.

Proof. We show that for any � � 1, if there is a polynomial-time (�; �)-
approximation algorithm for the (Uniform service cost, Total cost,
Spanning Tree) problem, then there is a polynomial-time �-approximation
algorithm for the MIN SET COVER problem.
Construct the natural bipartite graph, one partition for set nodes and the

other for element nodes, with edges representing element inclusion in the
sets. To this bipartite graph, we add an enforcer node with edges to all the
set nodes and also a mate node attached to the enforcer. Now we complete
this skeleton-graph by throwing in all the edges. We set the d-cost of an edge
from the enforcer to a set node to be 1. We set the d-cost of all other edges to
be � �m+1. We now specify the c-costs (service costs) for the edges. We set
the c-cost for the edge between the enforcer and the mate and for each edge
between a set node and the element nodes contained in this set to be some
�xed value, say S. We set the c-cost of all the edges between the enforcer
and the set nodes to be � � S + 1. Let G denote the resulting instance (See
Fig. 6.1) of the (Uniform service cost, Total cost, Spanning Tree)
problem with the c and d cost functions as speci�ed above and a uniform
service budget of S.
It is easy to see that any collection of k subsets which form a set cover

correspond to a tree in G that strictly services all the nodes and has a d-
cost of k. This is because the tree consisting of the enforcer and the nodes
corresponding to the sets in the collection, strictly services all the nodes and
has a d-cost of k.
Let Opt denote the size of a minimum set cover to the original instance.

Now we show that if there exists a tree T which is an (�; �)-approximation
to the resulting instance G of the (Uniform service cost, Total cost,
Spanning Tree) problem, then from it we can derive a �-approximation
to the original set cover instance. Such a tree T must satisfy the following
properties:

(1) The c-cost of T is at most � �Opt. This follows from the de�nition of �-
approximation and the fact that there exists a tree in G corresponding
to Opt with d-cost at most Opt.

(2) The nodes of Gmust be serviced by T within budget S. This is because
the c-cost of any edge is either S or �S+1, but T violates the budget
constraint by at most a factor �.
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Fig. 6.1: The skeleton-graph depicting the reduction from MIN SET COVER to the
(Uniform service cost, Total cost, Spanning Tree) problem. The c-costs indicated
above the edges and the d-costs indicated below.

(3) The mate node cannot be in T . This is because the d-cost of any edge
from the mate node is � �m+1 which is greater than the d-cost of T .
Since only the enforcer node can service the mate node with a service
cost of at most �S, the enforcer must be in T .

(4) Using the same reasoning as that for the mate node, none of the nodes
representing the ground elements can be in T . To service these nodes,
some of the set nodes must be in T .

We thus conclude that T consists only of the enforcer node and some of
the set nodes. Since the d-cost of T is at most � �Opt, it follows that the
number of set nodes in T is at most � �Opt. Since the element nodes are
serviced by the chosen set nodes with a service distance of at most �S, the
corresponding sets must form a set cover. We thus have a �-approximation
algorithm for set cover and this completes the proof.

6.2 Identical costs

We �rst recall additional de�nitions and results.
Given an undirected graph G(V;E), the CONNECTED DOMINA-

TION problem (the optimization version), is to �nd a a dominating set
D of vertices of minimum size such that the subgraph induced on D is
connected. The result in Feige [1996] combined in straightforward fashion
with the reduction in Garey and Johnson [1979] yields the following non-
approximability result:

Theorem 5. Unless NP � DTIME(nlog log n), the CONNECTED
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DOMINATION problem, on a graph with n vertices cannot be approxi-
mated to better than a lnn factor.

Theorem 6. Unless NP � DTIME(nlog log n), the (Uniform service
cost, Total cost, Spanning Tree) problem, with identical cost functions,
cannot be approximated to within (�; �), for � < 2 and any � < lnn.

Proof. We present an approximation preserving reduction from CON-
NECTED DOMINATION to the (Uniform service cost, Total cost,
Spanning Tree) problem. Speci�cally, we show that if there is a (< 2; �)-
approximation algorithm for the (Uniform service cost, Total cost,
Spanning Tree) problem then there is a polynomial-time �-approximation
algorithm for the CONNECTED DOMINATION problem.
Corresponding to an instanceG = (V;E) ofCONNECTEDDOMINA-

TION, we create a complete edge weighted graph G0 = (V 0; E0) as follows:
we set V 0 = V . We set the c-cost of each edge in E0 to be the length of the
shortest path in G, and the uniform service budget S to be 1.
We claim that there exists a connected dominating set of size at most k

in G if and only if there exists a solution to the (Uniform service cost, Total
cost, Tree)-bicriteria problem with cost at most (k�1). For the only if part,
note that any spanning tree for connected dominating set of size k is a tree
of cost (k � 1) that services all the nodes. Conversely, suppose we have a
tree of cost (k� 1) servicing all the nodes in G0. Then, the tree has no more
than k nodes, and all other nodes are at a distance of less than two (and
hence at most one) from some node in the tree. So, the vertices in the tree
form a connected dominating set for G. This completes the proof. 2

7. Di�erent Cost Functions

In this section, we present an (1; O( ~��lnn))-approximation algorithm for the
(Non-uniform service cost, Total cost, Tree) problem with di�erent
cost functions. We �rst recall a few basic de�nitions and preliminaries.

Definition 1. A node u is said to service a node v if u is within distance
Sv of v. The service-degree of a node is the number of nodes it services. The
service-degree of the graph is the maximum over all nodes of the service-
degree of the node and is denoted by ~�.

Given a graph G with edge weights and node weights, we de�ne the ratio
weight of a simple cycle C in G to be

P
e2C wteP
v2C wtv

:

Here wte denotes the weight of an edge and wtv denotes the weight of a
vertex. In other words, the ratio weight of a cycle is the ratio of the edge
weight of the cycle to the node weight of the cycle. As mentioned in Blum
et al. [1996] the following problem is NP-hard:
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Definition 2. The MIN-RATIO-ROOTED-CYCLE (MRRC) Prob-
lem: Given a graph G = (V;E) with edge and node weights, and a distin-
guished vertex r 2 V called the root, �nd a simple cycle in G that contains
r and has minimum ratio weight.

By a slight modi�cation of the ideas in Blum et al. [1996], we get the
following theorem.

Theorem 7. There is a polynomial-time approximation algorithm with per-
formance guarantee � = O(1) for the MRRC problem.

Finally, we assume that the graph is complete and the edge cost functions {
c and d { obey triangle inequality. The reason for this is as follows: consider
the (complete) graph obtained on the same set of vertices by adding edges
between every pair of vertices of c and d-costs equal to that of the shortest
c and d-cost paths between the corresponding vertices in the original graph;
then any solution on this new graph transforms to a solution of identical
value in the original graph.

7.1 Basic Technique

Before presenting the details, we give the main idea behind our algorithm.
To begin with, we may assume that a speci�c node r belongs to the optimal
tree. By running over all possible r's and picking the best we �nd the
required (approximate) tree. The algorithm runs in phases. Initially, the
solution contains only the node r. At any stage only a subset of the nodes are
serviced by the set of solution nodes. Each phase the algorithm �nds a nearly
optimal minimum ratio weight cycle that services some of the remaining
unserviced nodes in the graph. The cycle is contracted to a single node
and the algorithm moves to the next phase. Termination occurs when all
the nodes in the graph are serviced. A logarithmic performance guarantee
is obtained by assuring that the cycle added in each phase has low cost
compared to the optimal solution.

7.2 The Algorithm

We �rst de�ne a few additional terms used in describing our algorithm. At
any point in the algorithm, for each vertex vk 2 V , let Bvk denote the set
of vertices that are within c-distance of at most Svk from vk. It is easy to
see that Bvk can be computed in polynomial time.

We also need the concept of contraction of a set of nodes in the graph.
This is the natural operation of replacing this set of nodes with a single new
node, deleting edges with both ends in the set, and making the new node the
endpoint of those edges with exactly one endpoint in the set. Algorithm
Different describes the method in detail.
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Algorithm Different:

Input: A graph G = (V;E), edge cost functions c and d, ser-
vice budget Svk for vertex vk under the c-cost function.
(I) For i = 1 to n do

(1) Set r = vi. Set j = 0. Set G0 = G�Br [ frg.

(2) While Gj 6= r.

(a) Set j = j + 1.
(b) For all v 2 Gj compute Bv.
(c) Compute Cj, a �-approximate solution to the MRRC

problem on Gj where the edge weights are the d-edge-
costs and the node weights are jBvk j for k 6= i and 0 for
r.

(d) Modify Gj by contracting Cj into a supernode. Set r to
be the new supernode.

(e) Set Gj = Gj �Br [ frg.

(3) Let Ti be a minimum spanning tree on
S
j Cj under the d-cost.

(II) Let Heu = min
i
Ti. Output Heu.

Output: A tree Heu such that every vertex vi 2 V is within
a distance Svi from some node in Heu, under the c-cost, and the

d-cost of Heu is at most O( ~� � lnn) times that of an optimal
service-constrained tree.

7.3 Performance Guarantee

It is easy to see that Algorithm Different outputs a tree that services
all the nodes. It remains to show that the d-cost of Heu is within a factor
of O( ~� � lnn) of the optimal. We prove this in the following two lemmas.
For the rest of the paper, we will use the same symbol to denote a set and
its cardinality and the intent will be clear from the context.
LetOpt denote an optimal tree. In what follows, let i denote that iteration

of Step (I) in which r = vi 2 Opt. Let f denote the number of iterations
of Step 2 for this particular value of i. Let the set of cycles chosen in Step
2c of the algorithm be C1; : : : ; Cf , in order. We use Cj to denote both the
cycle as well as the d-cost of the cycle. We also use Opt and Heu to denote
the d-costs of the corresponding tree. Let �j denote the number of nodes
in G that are not serviced by the supernode r after choosing the cycle Cj

in the jth iteration of Step 2. Alternatively, �j is the number of vertices in
G� r after Step 2e in the j'th iteration.. Thus, �0 � n while �f = 0. Let
cycle Cj service tj new nodes.

Lemma 1.

Cj

tj
�

2� ~�Opt

�j�1
:
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Proof. Focus on the graph Gj at the end of iteration j � 1. Since Opt
services all the vertices we have that

P
vk2Opt

jBvk j = jV (Gj)j = �j�1.

We �rst observe that Opt induces a cycle (by doing an Euler walk along
the outside of the Opt tree, see Cormen et al. [1990], pp 697{700) with a

ratio weight of 2Opt
�j�1

. Hence, since in Step 2c we choose a �-approximate

minimum ratio cycle Cj it follows that

CjP
vk2Cj

jBvk j
�

2�Opt

�j�1
:

Since the service-degree of each vertex in G is at most ~�, it follows that
no vertex contributes more than ~� to the denominator of the left hand side
in the above equation. Thus ~� � tj �

P
vk2Cj

jBvk j: Hence

Cj

~� � tj
�

2�Opt

�j�1
:

The lemma follows. 2

Lemma 2.

Heu � 2� ~� HnOpt

where Hn = 1 + 1
2
+ : : :+ 1

n
is the harmonic function.

Proof. By de�nition of �j and tj , we have that

�j = �j�1 � tj (7.1)

and from Lemma 1, we have

tj �
Cj�j�1

2� ~�Opt
(7.2)

Substituting Equation (7.2) into (7.1) we get

Cj � (2� ~�Opt)
tj

�j�1
� (2� ~�Opt)(H�j�1 �H�j ):

Hence, since �0 � n and �f = 0, we get

fX

j=1

Cj � (2� ~�Opt)(H�0 �H�f ) � (2� ~�Opt)Hn:

The proof of the lemma now follows by observing that Heu�
Pf

j=1Cj . 2

Since Hn � lnn we obtain the following result.
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Theorem 8. There is a (1; O( ~� � lnn))-approximation algorithm for the
(Non-uniform service cost, Total cost, Tree)-bicriteria problem with
di�erent cost functions, where ~� is the maximum service-degree of any node
in the graph.

Remark. Note that the bounds of Theorem 8 also extend to the Steiner
version where only a set of terminal sites need to be serviced. The Steiner
version reduces to the regular version by setting the service budgets of the
nonterminal nodes to some large value, such as the diameter of the graph.

8. Identical Cost Functions

8.1 Spanning trees

We �rst consider the (Non-uniform service cost, Total cost, Tree
problem for identical cost functions case and provide a (2(1 + �); 2(1 + 1

�
))-

approximation algorithm. Algorithm Identical details this algorithm.

Algorithm Identical:

� Input: An undirected graph G = (V;E), edge cost function c,
service radius Svk for vertex vk, an accuracy parameter � > 0.

� (1) For each node vk 2 V , let Bvk denote the set of vertices
that are within distance of at most (1 + �)Svk from vk.

(2) Set X 0 = fv1; v2; : : : ; vng. Set X = ;.
(3) Repeat until X 0 = ;.

(a) Let i be such that Svi is the least among all vi 2 X 0.

(b) Set X = X [ fvig.

(c) Set X 0 = X 0nfvkjBvk \Bvi 6= ;g.

(4) Construct a graph G0 on the set of vertices in X . Let
the cost of an edge in this graph be the distance of the
shortest path between the two vertices in G.

(5) Construct a minimum spanning tree T of G0.
(6) Construct the subgraph H corresponding to T formed by

replacing each edge in T by a shortest path of G.
(7) Let Heu be a minimum spanning tree of H. OutputHeu.

� Output: A treeHeu such that any vertex vk is within a distance
of 2(1 + �)Svk from some node in Heu and the cost of Heu is
at most 2(1 + 1

�
) times that of any tree that contains a node

within distance Svk of any vertex vk.

Let Opt be an optimal solution. As mentioned we also use Opt and Heu
to denote the cost of the corresponding trees. We prove the performance
guarantee of Algorithm Identical in the following lemmas. Let the ver-
tices in X at the termination of Algorithm Identical be v1; v2; : : : ; vf ,
i.e., jX j = f .
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Lemma 3. Every vertex vk is within a distance 2(1 + �)Svk of some vertex
in X .

Proof. If vk 2 X then the lemma follows sinceHeu contains vk. If vk 62 X
then 9vi 2 X , such that Bvi \Bvk 6= ; and Svi � Svk . In this situation, it is
easy to see that vk is within a distance (1+ �)Svi +(1+ �)Svk � 2(1+ �)Svk .
This completes the proof. 2

Lemma 4. Opt �
fX

i=1

�Svi .

Proof. By de�nition, Opt contains at least one node from each Bvi for
all vi 2 X that is within distance Svi from vi. Since the Bvi for all vi 2 X
are disjoint, any tree connecting these nodes must cross the peripheral �Svi
width and the lemma follows. 2

Lemma 5. Heu � 2(Opt+
Pf

i=1 Svi).

Proof. We can construct a tree � spanning all the vi 2 X as follows:
for each vi 2 X , join vi to a vertex in Opt that is within distance Svi by a
shortest path. The length of this path is no more than Svi . Thus, the cost of

� is at most Opt+
Pf

i=1 Svi . Note that � is a Steiner tree that spans all the
vertices in X . SinceHeu is a minimum spanning tree on these same vertices,
computed using shortest path distances between them, standard analysis of
the minimum spanning tree heuristic for Steiner trees, yields that the cost
of Heu is at most twice the cost of �. The lemma follows. 2

Lemma 6. Heu � 2(1 + 1
�
)Opt.

Proof. Follows from Lemmas 4 and 5. 2

Lemmas 3 and 6 yield the following theorem.

Theorem 9. For any � > 0 there is a (2(1+ �); 2(1+ 1
�
))-approximation al-

gorithm for the (Non-uniform service cost, Total cost, Tree)-bicriteria
problem with identical cost functions.

8.2 Generalized Steiner Trees

We now consider the (Uniform service cost, Total cost, Generalized
Steiner forest) problem { a generalization of the (Uniform service cost,
Total cost, Spanning tree) problem. The reason for studying this prob-
lem stems once again from practical applications related to optical commu-
nication and distributed data management. Speci�cally, if we had a number
of sites with connectivity requirements only among some subsets of the sites,
rather than all the sites, then we need the solution subgraph to be a forest
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and not necessarily a tree. This motivates the service-constrained general-
ized Steiner forest problem. The formal statement of the (Uniform service
cost, Total cost, Generalized Steiner forest) problem is as follows:
given an undirected graph G = (V;E) with two di�erent cost functions c
(modeling the service cost) and d (modeling the construction cost) for each
edge e 2 E, a set of k site pairs (si; ti), and a bound S (on the maximum
service constraint), �nd a minimum d-cost forest F such that for each site
pair (si; ti) there exists a tree T 2 F with the property that both si and ti
are within distance S of the tree. The above problem is a generalization of
the (Uniform service cost, Total cost, Spanning tree) problem. To see
this, note that given an instance of (Uniform service cost, Total cost,
Spanning tree), we can construct an instance of the (Uniform service
cost, Total cost, Generalized Steiner forest) problem by specifying a
set of n � 1 site pairs { one for each pair of vertices of the form (r; v) for
some �xed node r in V . Clearly this implies that F consists of a single tree
and the vertices not in the tree are appropriately covered.

8.3 Description of the Algorithm

We �rst de�ne a few additional concepts that will be used to describe the
algorithm.

For each site vi 2 G, let Bi (referred to as the ball around vi), be the
set of vertices that are within distance of at most (1 + �)S from vi. We
refer to vi as the center of Bi. It is easy to construct the set Bi in polyno-
mial time. Let B = fB1; : : : ; Bng Given a set B of balls, we can naturally
de�ne an associated intersection graph I(V1; E1). The vertices in I are in
one-to-one correspondence with the balls in B. There is an edge between
two vertices in V1 if and only if the corresponding balls have a non-empty
intersection. (equivalently, if their centers are within a distance of 2(1+ �)S
from each other). As a part of our algorithm, we need to �nd minimum
cost generalized Steiner forests. This problem is NP-hard, and we thus
use the 2-approximation algorithm of Agrawal et al. [1995]. We denote this
algorithm by AKR-GEN-STEINER for the rest of the section.

Algorithm Generalized Steiner gives details of our heuristic for ap-
proximately solving the (Uniform service cost, Total cost, Generalized
Steiner forest) problem.
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Algorithm Generalized-Steiner:

� Input: An undirected graph G = (V;E), edge cost function
c, service budget S, a set of site pairs (si; ti) 1 � i � p, an
accuracy parameter � > 0.

� (1) If the distance between a site pair is at most 4(1 + �)S,
check if there is a node that is within a distance of at
most 2(1 + �)S from both of them. If so discard this site
pair from further consideration.

(2) For each site vi 2 G, compute Bi .
(3) Construct the intersection graph I(V1; E1) corresponding

to the balls fB1; : : : ; Bng.
(4) Find a maximal independent set D in I(V;E). Let jDj =

k.
(5) For each site si such that si 62 [Bi2DBi assign it to some

site sj such that Bi intersects with Bj and Bj is in D.
(6) Mark all the balls in D as active. For each ball Bi 2 D,

update its set of sites as those that are assigned to this
ball or contained within it.

(7) Construct an auxiliary graph G2(V2; E2) as follows: The
vertices V2 are in one-to-one correspondence with the cen-
ters of the balls in D. The cost of an edge between two
vertices equals the shortest path distance between the
centers of the corresponding balls. The set of site pairs
(p1; q1); : : : (pm; qm) are given as follows. If ball Bt is as-
sociated with site si and ball Bw is associated with site
ti, then the vertices corresponding to the balls Bt and Bw

are considered site-pairs.
(8) Construct a minimum cost generalized steiner tree T in

G2(V2; E2) using Algorithm AKR-GEN-STEINER.
(9) Output the tree T as the solution of the algorithm.

� Output: A forest Heu such that for all i, si and ti are within
a distance of 2(1 + �)S from some tree T 2 Heu and the
cost of Heu is at most 8 + 6

�
times that of any optimal service

constrained generalized Steiner forest.

Remarks:

(1) In Step 1, if a pair is discarded, it implies that the service constraint
is violated by a factor of at most 2(1 + �). This is because there is a
trivial tree made of a single node at distance at most 2(1 + �)S from
both the sites.

(2) In Step 5 no pair of site-mates are assigned to the same ball due to
the pruning in Step 1.



18 MARATHE, RAVI AND SUNDARAM

8.4 Performance Guarantee

By the de�nition of active balls, each ball in D separates at least one site.
Since the balls are mutually disjoint it follows that any optimal forest has to
visit each ball to ensure that the individual sites have at least one neighbor
within a distance S from it. Thus any optimal service constrained forest
must contain at least one node from each Bi in D.
Next, observe that Opt � k�S. To see this, observe that the above dis-

cussion implies that the optimal tree strictly visits each of the balls in D.
Any forest connecting these nodes must cross the annular width of �S for
each ball in D (since these balls are non-intersecting). Moreover, since there
are k balls in D it follows that the total peripheral distance covered is at
least k�S.

Lemma 7. There exists a generalized Steiner forest of the sites chosen in D
of cost no more than 3k(1 + �)S +Opt.

Proof. The idea is to use the optimal generalized Steiner forest for the
original problem of cost Opt. However since the speci�cation of site pairs
in D is di�erent from those in the original graph, we must add more links
to this solution to make it feasible for the new site pairs.
In particular, we �rst consider the connected components of site pairs

under the new speci�cation leading to subsets of nodes inD that are serviced
by the same tree in the solution. We then identify a spanning tree of site-pair
demands between these nodes - for example, two nodes x and y may be a site
pair since their balls respectively intersect the balls of sites si and ti in the
original problem, so the edge (x; y) is a new site-pair demand. To satisfy this
demand using the original optimal solution, we add the connections from x
to si to the tree servicing si, and similarly from y to ti to the tree servicing
ti (the same as before) thus connecting x and y via the tree. We do this for
every site-pair demand in a spanning tree of demands for every such subset
in D.
The cost of the extra connections added is the sum of the degrees of all

the nodes in D in these spanning trees times 3(1 + �)S for each connection.
Since jDj = k and the sum of degrees in a forest is at most twice the number
of nodes, the cost of the connections is at most 6(1 + �)S. By the above
argument, adding these connections to the original optimal forest gives a
feasible solution for this problem with the stated cost. 2

Lemma 8. Heu � 6(1 + �)kS + 2Opt.

Proof. By Lemma 7, there is a generalized Steiner forest of cost at most
Opt + 3k(1 + �)S connecting all the sites in D appropriately. Since we
use a 2-approximation algorithm (Agrawal et al. [1995]), we get the bound
claimed in the lemma. 2

Thus we have the following theorem.
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Theorem 10. There is a (2(1 + �); 8 + 6
�
)-approximation algorithm for the

(Uniform service cost, Total cost, Generalized Steiner forest) prob-
lem with identical cost functions.

9. Diameter and Bottleneck

In this section we sketch our polynomial time results on two other variants
of the objective function.

Theorem 11. The problems (Non-uniform service cost, Bottleneck,
Spanning Tree) and (Non-uniform service cost, Diameter, Span-
ning Tree) with di�erent cost functions, are solvable exactly in polynomial-
time.

Proof. We �rst consider the (Non-uniform service cost, Bottleneck,
Spanning Tree) problem { given a graph with two cost functions on the
edges, and a service budget for each node, �nd a tree such that the service
budget (under one cost function) for each node is satis�ed and the tree has
minimum bottleneck cost under the other cost function (i.e., the cost of
the maximum edge in the tree is minimum). This problem can be solved
by �rst sorting the edges in increasing order of the d-costs and adding the
edges in that order until one of the connected components in the resulting
subgraph satis�es the service constraints for all the nodes. The details are
straightforward and so are omitted.
Next consider the (Non-uniform service cost, Diameter, Spanning

Tree) problem. Using the ideas in Camerini and Galbiati [1982] and Ravi et
al. [1996], one can show that the the service-constrained minimum diameter
tree problem can be solved in polynomial time. In this problem, we are
given a graph G(V;E) and a service radius Svi for each vertex vi. We wish
to �nd a tree with minimum diameter (under the d-costs) such that every
vertex vi is within distance Svi (under the c-cost) from some node in the
tree.
We only sketch the main idea of the algorithm below. The algorithm

uses the roof graph construction in Ravi et al. [1996]. Consider the case
when the d-costs are integral and polynomially bounded in the size of the
graph. Consider Opt { a minimum-diameter service-constrained tree. Let
Opt have diameter D. Let x and y be the endpoints of a longest path
(under d-cost) in the tree. The weight of this path, D, is the diameter of the
tree. Consider the midpoint of this path between x and y. It either falls at a
vertex or in an edge in which case we can subdivide the edge by adding a new
vertex. First we guess the value of D (there are only a polynomial number of
guesses). All the potential midpoints lie in half-integral points along edges
of which there are only a polynomial number. From each candidate point
we consider the set of nodes within distance D=2 and check whether they
service all the vertices in the graph. We choose the least such distance and
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the correspondingly suitable point and output the breadth-�rst tree rooted
at this point appropriately truncated.
When the edge weights are arbitrary, the number of candidate midpoints

are too many to check in this fashion. However, we can use a graphical
representation (called the roof curve in Ravi et al. [1996]) of the distance
of any node from any point along a given edge to bound the search for
candidate points. This gives us the required result in the diameter case. 2

Theorem 11 can be extended easily to the Steiner tree variant. We thus
have the following theorem.

Theorem 12. The problems (Non-uniform service cost, Bottleneck,
Steiner Tree) and (Non-uniform service cost, Diameter, Steiner
Tree) with di�erent cost functions, are exactly solvable in polynomial-time.

10. Concluding Remarks

In this paper we focused on the problem of service-constrained network
design problems. We formulated a number of these problems and presented
general approximation techniques along with nearly-tight hardness results.
In the bicriteria framework, we investigated problems (A, B, S), where A
= Maximum service cost, B 2 f Total cost, Diameter, Bottleneck
cost g and S 2 f Spanning tree, Steiner tree, Generalized Steiner
tree g.
The class of problems in which A = Total service cost is also a natural

problem to study. Variants of this problem have been studied by Milo and
Wolfson [1988]. Note that if both the objectives A and B are measured
using identical costs then the problem (Total service cost + Total Cost,
Tree) is the ubiquitious minimum spanning tree problem | and thus is
e�ciently solvable. In contrast, the (Total service cost, Total Cost,
Tree) problem using identical costs can be shown to be NP-complete.
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